What do we want from windows?

The homeowner:

- Daylight
- Visual contact with the outside world
- Energy efficiency
- □ Rapid ventilation
- Escape in the event of fire

What affects the energy efficiency of windows?

- □ Solar heat gain adds heat though the window (Positive)
- □ Thermal losses lose heat through the window (Negative)
- Air losses lose heat through the window (Negative)

Air losses (Negative)

Robin Kent, Issue 2 BFRC 2005 Page 1

Assess the window and NOT the components

□ Always assess the system and NOT the components

- \Box g_{window} is NOT the same as g_{glass} (g_{window} is almost always worse than g_{glass})
- \Box U_{window} is NOT the same as U_{glass} (U_{window} is almost always worse than U_{glass})
- □ The L-factor should be assessed using the components of the real window

- Decreasing the U-value excessively can decrease the g-value and decrease the overall energy efficiency of the window
- □ The solution is to assess the overall energy efficiency of the window using Window Energy Rating

How do we get the Window Energy Rating for a specific window?

Robin Kent, Issue 2 BFRC 2005 Page 4